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Abstract

A yet unmet challenge in algorithmic fairness is the problem of intersectionality,
that is, achieving fairness across the intersection of multiple groups—and verifying
that such fairness has been attained. Because intersectional groups tend to be small,
verifying whether a model is fair raises statistical as well as moral-methodological
challenges. This paper (1) elucidates the problem of intersectionality in algorithmic
fairness, (2) develops desiderata to clarify the challenges underlying the problem
and guide the search for potential solutions, (3) illustrates the desiderata and
potential solutions by sketching a proposal using simple hypothesis testing, and (4)
evaluates, partly empirically, this proposal against the proposed desiderata.

1 Introduction

That intersectionality matters is a point of consensus in the algorithmic fairness literature. A model’s
performance might be much worse for women of color than for women and people of color considered
separately [1]. In this paper, we elucidate a problem that intersectionality raises for algorithmic
fairness in practice: Because data on intersectional groups is often severely limited, verifying that
algorithmic fairness—under various definitions thereof—has been attained is difficult. Although this
problem is recognized in the literature [2, 3, 4, 5], its challenges do not appear to be fully appreciated
and many existing contributions violate minimal moral or methodological desiderata.

Our contribution is fourfold: We (1) elucidate the problem of intersectionality in algorithmic fairness,
and (2) develop desiderata to clarify the challenges that underlie the problem of intersectionality and
to guide the search for potential solutions. Moreover, we (3) illustrate the desiderata and potential
solutions by presenting a statistical setup that uses simple hypothesis testing, and (4) evaluate this
proposal, partly empirically, in light of the desiderata.

Our larger aim is to advance the literature on algorithmic fairness more broadly. The approach that
we propose in response to the problem of intersectionality differs fundamentally from the typical way
of “measuring” algorithmic fairness.1 We hence advance the debate, by pointing out possibilities of
approaching fairness differently: as accounting for uncertainty (instead of concentrating on point
estimates) and as a matter of sufficiency (instead of equality).

1We use fairness “measure,” “metric” and their cognates with two caveats. First, the problem is one of
estimation not measurement. Second, fairness metrics are meta-metrics since they aggregate a higher-dimensional
vector of model performance into a lower-dimensional summary [6].
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2 Preliminaries

2.1 Algorithmic Fairness

In the literature on algorithmic fairness, “fairness” is typically defined as model performance (such
as accuracy or false positive rate) that is roughly equal across all relevant groups. Many versions of
algorithmic fairness consider fairness to have been achieved if

|m(G)−m(·)| < ϵ for some small ϵ, ∀G (1)

Where G denotes a subgroup of the population, m(G) a model’s performance (however understood)
on only the subset of the data that belongs to group G, and m(·) the model’s performance calculated
across the entire dataset, irrespective of group membership. Membership in G typically corresponds
to a sensitive or protected attribute such as race, sex, age, disability or marital status but G may also
be defined intersectionally as a combination of such attributes.

Equation (1) generalizes a large family of definitions or—when aggregating |m(G) − m(·)| for
all groups—metrics of fairness. We thus take (1) to represent the typical way of understanding
algorithmic fairness. This typical way of understanding fairness faces the problem of intersectionality.

2.2 The Problem of Intersectionality

As the number of attributes that define subgroups grows, the amount of data available for each
subgroup shrinks rapidly. After all, the number of subgroups grows exponentially with the number of
protected attributes: For n binary attributes, there are 2n intersectional groups. This, in turn, entails a
data problem: When social identities are constituted by intersections of increasingly many attributes,
and when these constituting attributes are not just binary, the data within each of the intersections
can become very small. In Europe, where discrimination is highly intersectional and fairness audits
are encouraged by legislation,2 fairness audits may need to account for several thousand subgroups.3
And because gathering the data necessary for fairness audits is typically costly—e.g., the “ground
truth” needs to be established to assess whether a prediction is correct—such data tend to be scarce to
begin with.

In short, the intersectionality problem of algorithmic fairness is a problem of statistical uncertainty
due to small data and, subsequently, raises problems for how “fairness” is typically defined.

Intersectionality renders fairness metrics, as they are typically defined, meaningless. These metrics,
such as (1), rely on point estimates of model performance (e.g., whether this performance is roughly
the same for all groups). But point estimates become nonsensical with small data [2].4 The chal-
lenge posed by intersectionality for algorithmic fairness is to define a fairness metric that provides
meaningful estimates of fairness even when groups are very small and audit data are sparse.

Our discussion hence adds to the existing technical and critical objections against (intersectional)
algorithmic fairness [10, 11], acknowledging that a commitment to intersectionality and fairness
likely requires a broader set of actions than estimating certain properties of models [12, 13, 14].

3 Existing Work

Various statistical methods have been proposed for intersectionality in algorithmic fairness.
2Recital 49 of the EU Artificial Intelligence Act [7] encourages “the development of benchmarks and

measurement methodologies for AI systems” [8]. Yet the statistical problems of intersectional fairness are,
in some way, greater in Europe. Since nationality groups are already comparatively small, intersectional
groups are even smaller subgroups within already small nationality groups. For example, Hungarian Roma face
discrimination in the housing market, Maghrebi French in the labor market, whereas people of African descent
in England and Wales face discrimination in the criminal justice system [9].

3Assuming 3 binary attributes (e.g., non-white, cis-gender, same-sex orientation) 1 three-valued attribute (e.g.,
gender as ‘male,’ ‘female,’ and ‘neither’), 9 different ethnic backgrounds (e.g., Roma, Chinese, Turkish), and 12
different nationalities or localities (e.g., Hungarian, German, French), yields 2,592 intersectional subgroups. And
this number may be conservative since the number of discernible ethnic groups is larger than 9, of nationalities
is larger than 12, and the legally protected attribute of age is not even included.

4For example, in binary classification, an individual prediction is either 1 or 0; and the model accuracy for
each singleton group is thus either 1 or 0.
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3.1 Kearns et al.

An early identification and statement of the problem of intersectional fairness arising from small
groups is due to Kearns et al. [2]. The approach of Kearns et al. involves an audit algorithm that
learns to classify models as fair or unfair instead of defining a fairness metric. The process of learning
this audit algorithm is subject to a fairness constraint that is weighted depending on the proportion of
the population belonging to a particular group G.

Kearns et al. define α(G) = Pr(G) and reformulate fairness in (1) as
α(G)|m(G)−m(·)| < ϵ ∀G (2)

Essentially, the addition of α(G) relaxes the original fairness metric of (1) depending on the proportion
of G as a share of the overall population. The smaller G is, the more the condition is relaxed. As
Kearns et al. explain, this addition is necessary to enable statistical estimation, given the increasing
statistical uncertainty with decreasing group size. We discuss the implications in Section 4, and give
the results of an empirical study regarding this formulation in Appendix E.

3.2 Foulds et al. and Morina et al.

Foulds et al. [3] provide an alternative approach based on ratios of model performance metrics. An
expanded version of which is, in turn, given by Morina et al. [4].5

These definitions require that the ratio of some metric value between two groups be within a fixed
interval. For example, suppose m(G) measures the true positive rate (TPR) for subgroup G. Then
the ϵ-differential intersectional definition of TPR parity (equal opportunity) given in [4] is that

e−ϵ ≤ m(G)

m(G′)
≤ eϵ ∀G,G′ (3)

Morina et al. [4] note that ϵ = 0 corresponds to “perfect fairness” (m(G) = m(G′)).

3.3 Molina and Loiseau

Molina and Loiseau use a statistical approach to addressing intersectionality and fairness [5]. They
call a classifier (ϵ, δ)-probably intersectionally fair if “the expected number of people that faces a
discrimination more than ϵ is less than nδ” (n is the population size).6

3.4 Cherian and Candès

Cherian and Candès [16] address fairness auditing for many subpopulations within the framework of
hypothesis testing, as we do here. They use a bootstrap process to provide statistical performance
bounds for many subpopulations at once. Our addition to this study is the illumination and discussion
of desiderata (in Section 4), a clear description of how one can design fairness metrics using
hypothesis testing (Section 5), and an empirical study showing that these metrics encourage (rather
than discourage) the gathering of additional data to improve model performance (Section 6).

3.5 Khan et al. and Agrawal et al.

Khan et al. [17] consider metrics of fairness, accuracy, and variance for model estimators. They
empirically show that there tends to be a tradeoff between these three values. In a similar vein,
Agrawal et al. study debiasing methods, and in doing so show both theoretically and empirically
that estimation variance tends to be higher in small subgroups [18]. Additionally, they prove results
suggesting that partial debiasing results in both less variance and better fairness properties.

5We note that Foulds et al. (the same group as in [3]) also study the usage of Bayesian modeling to more
accurately measure fairness metrics than point estimates [15]. While these Bayesian models for measuring
fairness metrics may give more accurate estimates than point estimates, they do not allow for for the same kind
of statistical analysis and ethical evaluation as a confidence interval (that we propose in Sections 4 and 5).

6Molina and Loiseau moreover highlight the issue of estimating fairness of a model on subgroups for whom
the set of predicted values on that subgroup is a proper subset of the set of all predicted values. This becomes an
issue because they use a ratio similar to that in Equation (3), which is undefined if m(g′) = 0 for some group g′.
Our models do not suffer from this issue; however, extremely tiny subgroups do come with their own statistical
uncertainty issues, as we highlight in Section 5.
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4 Desiderata

Although the problem of intersectionality is recognized in the literature, how difficult this problem
is may not have been fully appreciated. At least some of the existing contributions violate minimal
moral or methodological desiderata, as we shall see in Sections 4.1, 4.2, and 4.3 (and Appendix E).

A core tenet of building ethical algorithms is that machine-learned models need to be consistent
with “human values,” which can be formulated as desiderata. We see the following desiderata for
intersectional fairness metrics.

4.1 Minimal Justice

A first desideratum we call “minimal justice.” The idea is, roughly, that a standard of fairness
should not be lower for certain groups, such as those historically targeted for discrimination or facing
structural injustice. Intuitively, minimal justice is a form of minority protection that says “don’t
disadvantage the disadvantaged.”

This desideratum is a weak form of prioritarianism. Recent work in algorithmic fairness has identified
a similar prioritarian idea in “predictive justice” [19]. Whereas prioritarianism, a theory of distributive
justice for well-being, demands that “benefitting people matters more the worse off these people are”
[20], minimal justice requires only that those “worse off” should be given at least the same weight in
aggregating a fairness metric. The desideratum does not require that greater weight be given to any
group, and is hence met when a standard of fairness is identical for all groups.

To illustrate the desideratum, consider an example. Notwithstanding its merits, the proposal of Kearns
et al. [2] may violate minimal justice. As noted above, the addition of α(G) in (2) relaxes the fairness
constraint proportional to the size of a group. The smaller a group is (as a share of the data), the worse
a model performance can be and still certify the model as fair. The fairness standard is hence lowered
for small groups. On the assumption that these small groups include historically disadvantaged or
oppressed groups, (2) violates minimal justice.

And drastically so: For a group G′ that is c times smaller than group G (i.e. α(G)
α(G′) = c), a model can

be certified as “fair” if the disparity between the average performance and the performance for group
G′ is as much as c-times worse than it is for group G. Furthermore, for some value of ϵ there are
groups that are proportionally so small that there is no model performance poor enough to certify the
model as unfair. For example, if ϵ = .01, for a binary classifier, any group whose proportion of the
total population is less than ϵ is protected by essentially no fairness constraint at all.7

The ethical impact can be immense. A group might look relatively small in the data but be, in
fact, large in absolute numbers in the population. Indeed, disadvantaged groups tend to be under-
represented in data [21, 22]. Thus, the approach of Kearns et al. may lower the standard of fairness
for precisely those groups that fairness is meant to protect.

4.2 Consistent Conceptualization

Any fairness metric operationalizes a certain idea, or concept, of fairness. A second desideratum is
that fairness metrics should operationalize a concept of fairness consistently.

This desideratum may resemble that of Minimal Justice. But whereas Minimal Justice is a moral
desideratum, Consistent Conceptualization is a methodological one. Minimal Justice assumes a
standard of fairness as given (and requires that it not be lower for certain groups). Consistent
Conceptualization ensures that this standard has minimal construct validity, i.e., that the formal
operationalization of fairness represents the informal, intended conception of fairness (whichever that
may be). The importance of construct validity for fairness is already established in the literature [23].

Typically, fairness metrics in algorithmic fairness operationalize the idea of equality. This is particu-
larly evident in (1) which, for each group G, restricts the absolute disparity of m(G) from overall

7The average model performance m(G) and m(·) is constrained to be less or equal to 1. But the maximum
deviation of accuracy in the binary setting is 1. Thus, even if the model is entirely inaccurate for this population
and perfectly accurate for the rest of the population, the constraint is still satisfied.
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mean performance m(·). This is one—albeit a very simple—way of operationalizing inequality (for
alternatives see [24]). Likewise, (3) operationalizes fairness as equality [3, 4].8

Moreover, (1) and the definition by Foulds et al. and Morina et al. operationalize equality consistently.
The fairness metrics apply an equality condition without bounds or exceptions.

Not so the proposal by Molina and Loiseau [5], which explicitly bounds equality. Effectively, the
fairness measure permits that some small number of people faces severe discrimination, as long as the
likelihood of discrimination or their relative size as a share of the overall population is small.9 This
fairness metric thus fails the desideratum of operationalizing the concept of equality consistently.

Typically fairness metrics, and all instances of (1), operationalize fairness as equality. Alternatives,
well-known from distributive justice, include prioritarianism, stating that more of some good, such
as model performance, should be given to those in greater need [20], and sufficientarianism, requiring
that everyone has enough of some good (instead of the same) [25, 26].

4.3 Incentive Compatibility

The final desideratum starts with the recognition that metrics specify incentives. Anyone who wants
to increase their models’ fairness may want to maximize a fairness metric. The final desideratum
thus requires that a fairness metric not have “perverse” incentives of two kinds: discouraging data
collection and allowing “gaming.”

First, a fairness metric should not discourage data collection. Any fairness metric that indicates
greater unfairness only because further data are sampled from some group would fail to be incentive
compatible. Likewise, inversely, any fairness metric would fail the desideratum that indicates greater
fairness only because data based on group identity are dropped.

The fairness metric (2), of Kearns et al., likely violates this desideratum of incentive compatibility.
This is because collecting more data on a minority population G tightens the constraint by increasing
α(G), thus making a certification of “fairness” at a given level of ϵ more difficult. Specifically,
suppose that m(G) = .15 and m(·) = .85. If α(G) = .01, then the performance would be deemed
“fair” for all ϵ > 0.7 × 0.01 = .007. However, if we collect more data for group G such that
α(G) = .2, then the model would be “fair” only for ϵ > 0.7× 0.2 = .014. Unless the additional data
results in material improvements to m(G), for any ϵ such that .007 < ϵ < 0.014, the fairness metric
(2) would certify a given model as fair prior to further data collection, but as unfair afterwards. In
short, under (2), fairness for hard-to-predict groups could be attained simply by under-representing
them in the training data. We see this effect in our empirical study, described in Appendix E. We
leave the details of this study to Appendix E, but the results show that the fairness metric suggested
by Kearns et al. appears to indeed disincentivize additional data collection, violating Incentive
Compatibility.

This is a “perverse” effect because, in practice, additional data collection about a minority group will
help improve the model performance for that group. In other words, the metric gives an incentive to
do the opposite of what it is meant to achieve.10

Whether other metrics [4, 3, 5] violate this desideratum depends on whether the estimated performance
disparity is greater than the true disparity (which further data would likely help approximate). Fairness
metrics that operationalize fairness as equality (e.g., as model performance disparity across groups),
incentivize m(G) to be nearly the same for all subgroups G. If the true model performance is
nearly equal among groups, then these metrics incentive further data collection in order to have more
accurate estimates of m(G).

Second, a fairness metric should not encourage knowingly erroneous predictions. But some metrics
(e.g., statistical or demographic parity) have exactly this property: Even if the label that we want to
predict is known (which it generally, of course, isn’t), “fairness” as these metrics define it can be
improved by erroneous predictions. This is an undesirable property of fairness metrics [27].

8Compared to (1), (3) aims for equality between groups (as opposed to minimizing disparity with m(·)), and
measures relative disparity (a performance ratio instead of performance difference).

9Molina and Loiseau [5] write: “It can be seen for some given ϵ as a statement on the expected size of the
population that is not being discriminated too much against.”

10We do not contend that more data should be collected. Privacy considerations are important. Our point is
instead that maintaining the appearance of a good fairness metric is a bad reason to not collect more data.
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5 Two Alternative Metrics

We now illustrate how these desiderata can be met. We propose two alternative models, which we
call the “optimist’s” and “pessimist’s model” respectively. Both define the problem using hypothesis
testing. The optimist has the null hypothesis that the model is fair, and we have to prove it is not
(similar to “innocent until proven guilty”); the pessimist inverts the “burden of proof” and has the
null hypothesis that the model is unfair.11

5.1 Optimist’s Model

We could formulate the problem of fairness for small groups as testing the joint hypothesis that

H0 : m(G) > c ∀G
H1 : m(G) ≤ c ∃G

Consider a group G of size nG. Suppose m(G) is accuracy. As a sample proportion, the standard

error for our estimate of m(G) is
√

m(G)(1−m(G))
nG

. Then, we would reject the null if the upper end

of its confidence interval is less than c, i.e., if m(G) + 1.64
√

m(G)(1−m(G))
nG

< c (ignoring multiple

testing).12 Under this formulation, we reject H0 if m(G) is sufficiently less than c, where “sufficiently
less” has to do with our statistical power to detect that it is less. We would declare the model fair, if
at given level c we cannot statistically reject that the model performs at least c well for all groups.

A minority population which is sufficient in number would easily reject the null if m(G) is truly
below c. Indeed, even with a population size of nG = 1000, if c = 0.7, then a value of m(G) < 0.67
would reject the hypothesis that the model is fair.

5.2 Pessimist’s Model

Depending on a model’s deployment context, the optimistic approach might be problematic.13

Consider instead the following pessimistic hypothesis test.

H0 : m(G) < c ∃G
H1 : m(G) ≥ c ∀G

We would declare the model fair, if at a given level c we know with statistical certainty that the model
performs at least c-well for all groups. In this case, (ignoring multiple testing again) we would require

that m(G)− 1.64
√

m(G)(1−m(G))
nG

> c for all G.

5.3 Fairness Metrics

The formulations can be extended from a hypothesis test to a fairness metric by finding the maximal
c for which the respective null hypothesis cannot be rejected (for the optimist) or can be rejected (for
the pessimist). In the optimist’s model, choose the maximal c such that

c ≤ m(G) + 1.64

√
m(G)(1−m(G))

nG
(4)

for all relevant groups G. The fairness metric is the maximal c such that we cannot reject the
hypothesis that the model performs at least c-well for all groups.

11Throughout, we assume that for the metric m(·) larger values are better (think accuracy, not error rates).
Specifically, and without loss of generality, we use accuracy as our sample metric. This choice is for simplicity
only; one could replace accuracy with any other metric for which higher values are preferred. For the hypothesis
tests we describe, we use a z-score of 1.64, which corresponds to a 95% confidence interval for a one-sided
hypothesis test. This is a conventional parameter choice and nothing in our argument depends on it.

12This ignores multiple hypothesis testing, which we address in Appendix B.
13Depending on the ethical risks involved in how a model is used, the more precautionary assumptions behind

the pessimist’s model might be more appropriate.
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This metric can be read as saying that a model is “fair up to c.” Intuitively, this means that, for all we
know, the model performance m(G) (say, accuracy) is likely as high as c for each group.

On the pessimist’s model, we instead choose the maximal c such that

c ≤ m(G)− 1.64

√
m(G)(1−m(G))

nG
(5)

for all relevant groups G. This fairness metric is the maximal c such that we reject the hypothesis
that the model is unfair, that is, we reject that it does not perform at least c-well for each group.

This metric can be read as saying that a model is “unfair above c.” The model likely performs at least
c-well for each group; but for values above c, there likely is at least one group for which the model
does not perform at least c-well—and we hence can’t rule out that the model is unfair.

In summary, the fairness metrics are defined as bounds of the intervalm(G)− 1.64

√
m(G)(1−m(G))

nG
,m(G) + 1.64

√
m(G)(1−m(G))

nG


This interval, of course, now has two interpretations. For one, it is the 90% confidence interval for
the value of m(G) for each G. Moreover, across all groups, it is also the interval in which we cannot
reject the hypothesis that the model is unfair, nor can we reject the hypothesis that the model is fair.14

5.4 Discussion: Desiderata

Both metrics satisfy Minimal Justice. The bound c encodes a standard of fairness that is identical for
all groups. Moreover, the relative size of groups doesn’t matter. Whether a null hypothesis can be
rejected changes with the absolute size of the group nG (rather than the proportion nG

n ).

On the optimist’s metric, for a small group, the difference between the actual (lower) model perfor-
mance and the level up to which a model can be certified as fair might be large. But both of our
metrics base their certification of “fairness up to c” on an aggregation that gives all groups the same
weight. In fact, the pessimist’s metric can be called “epistemically risk averse” insofar as it picks
the highest lower bound out of all groups’ confidence intervals (and hence is similar to the maximin
decision rule).

On Consistent Conceptualiztion, both of our metrics conceptualize fairness as sufficiency. They
understand fairness not as a matter of whether everyone has the same (as equality does), but whether
everyone has enough [25, 26]. This idea is operationalized in (4) and (5) in a transparent and natural
way: with an inequality. Moreover, the threshold c, what counts as “enough,” is determined absolutely
in the terms of model performance measure, and not depending on, e.g., how well the model performs
on other groups. Thus, both of our metrics operationalize sufficiency consistently across all groups.

For Incentive Compatibility the picture is mixed: Both of our metrics discourage gaming (and thus
satisfy Incentive Compatibility in this respect). This is because both fairness metrics determine
(un)fairness as the highest (or lowest) expectable model performance across all groups. As such,
improving model performance will never increase unfairness; and decreasing model performance
will never increase fairness. In fact, decreasing model performance may lead to a decrease in fairness.
It appears that operationalizing the idea of fairness as sufficiency is what makes our fairness metrics
less susceptible to gaming—in particular, that the minimum level of model performance is defined in
absolute terms and equally enforced for all groups.

But one of our metrics, namely the optimist’s, may discourage further data collection (and thus
violate Incentive Compatibility in its first respect). Because the optimist’s model starts with the null
hypothesis that a model is fair at a given c, gathering more data can make things “worse”; that is,
with more data, we might come to reject the optimistic null hypothesis of fairness at a given c. A
model might perform very poorly for certain groups, but we cannot reject the null hypothesis that the
model is fair up to c, thanks to sparse data—and the metric thus results in an incentive to not sample
more data but to instead “look the other way.”

14The reader may go to Appendix A for an exploration on the impacts of changing m and n on these models.
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6 Fairness Datasets Analysis

We evaluate empirically whether our metrics meet the desideratum of incentive compatibility. The
question is: Do our metrics incentivize or disincentivize additional data collection?

To answer this question, we “simulate” additional data collection by experiment. We train models on
increasingly larger subsamples of benchmark datasets and observe how metrics behave as the size
of the training data increases. The behavior that we want to see is that the fairness metrics increase
with the size of the training data sampled from the dataset. If, instead, a fairness metric decreased as
greater shares of the dataset are sampled, the metric would disincentivize further data collection.

We seek to observe our metrics’ behavior across the largest feasible range of benchmarks. To
achieve this, we use lale, a Python library created by IBM [28]. Lale allows for the creation of
consistent automated machine learning models across 20 well-known “fairness datasets” that can
easily be fetched, modeled, and evaluated [29]. These datasets are all tabular with a categorical target
variable. They each come with “fairness metadata,” which includes protected attributes, along with
ranges/values of those attributes that correspond to the privileged group.15 Details on the methods of
our analysis are in Appendix C. Here we only discuss the main result on testing whether our metrics
incentivize against data collection.

For each of the datasets, we observe model performance m(G), as well the optimist’s cg1 and the
pessimist’s fairness metric cg2 respectively. For ease of interpretation we use accuracy as model
performance; neither our results nor their interpretation depend on this.

We ran two versions of this experiment. In one version, we subsample the entire dataset of each
benchmark; whereas in another, we subsample only on the critical subgroup, which is the group
that is right on the c threshold. The first version simulates additional data collection for all groups,
whereas the latter for those groups that “drag down” the fairness metric. Here we concentrate on
results from subsampling on the critical subgroup only, shown in Figure 1.16 Full results for both
versions are in Appendix C.4.

Figure 1: Plots of accuracy m(G), optimist’s metric cg1, and pessimist’s metric cg2 of critical subgroups
G for each dataset. The x-axis corresponds to the percentage of the critical subgroup that is kept.
Legend lists the dataset name.

15While there have been critiques of the usage of some of these datasets [30] [31], they are still appropriate
for the purpose of testing whether our proposals incentivize or disincentivize the collection of additional data.

16Some of the plots are disconnected. This is because sometimes the subsampling of the dataset did not
include any members of the critical subgroup; in those cases, the model could not predict for that subgroup, so
no accuracy measurement could be taken. The most erratic curves (curves of m(G) and c2 for the creditg and
nlsy datasets) correspond to either a subgroup of size 1 or 2.
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The thing to note here is that there is a trend upwards in each of these plots. Most notably, the
middle plot, on the optimist’s metric cg1 shows this upward trend.17 This suggests that our optimist’s
metric—at least for the datasets tested—does not pose perverse incentives. The further we go on
the x-axis (representing more data being “collected”), the model performance as well as the fairness
metrics tend to improve.

Consider for example the behavior of the optimist’s metric for the model trained on increasing
amounts of data from the tae dataset (brown line that “starts” lowest in middle figure). Although the
metric does not strictly increase as the training is based on greater data (the metric decreases slightly
from 20% to 30% of data used), it shows a very strong upward trend.

7 Conclusion

Although the general idea of intersectionality seems easy to state, putting intersectionality to work
in quantitative social science is, generally, far from straight-forward [32]. Likewise, intersection-
ality presents a problem for algorithmic fairness: Intersectionality requires estimating statistical
properties across subgroups that are increasingly small, which gives rise to statistical as well as
moral-methodological challenges.

Statistically, small groups are a challenge for estimation. As statistical uncertainty increases (due
to more and smaller groups), the point estimates of model performance for these groups become
meaningless. Any approach of intersectional fairness needs to account for statistical uncertainty.
But some existing metrics do not seem to fully appreciate the moral-methodological challenges
that underlie this problem and “lower the fairness bar” for smaller groups, i.e., the metrics violate
desiderata such as Minimal Justice or Consistent Conceptualization.

With this paper, we elucidate this intersectionality problem for algorithmic fairness: We develop
minimal desiderata to clarify the moral-methodological challenges underlying this problem; we argue
that some existing fairness metrics fail these desiderata, but illustrate that the desiderata can be met.
We propose fairness metrics that rely on hypothesis testing (instead of performance point estimates)
and that understand fairness as sufficiency (instead of equality). On these proposed metrics, fairness
is understood as a certain minimum level of expected model performance that is, for all we know,
likely enjoyed by all groups. We empirically evaluate the metrics against the proposed desiderata,
including on 18 datasets that are widely used for fairness benchmarks.

In light of their technical and normative-theoretical limitations, the metrics we propose should be seen
as illustrations. Technically, the simple hypothesis testing needs to be extended to multiple hypothesis
testing to allow for interdependent subgroup memberships (see Appendix B). Normative-theoretically,
the desiderata that we develop are not exhaustive and they do not uniquely characterize the metrics
we propose.

Nevertheless, overall, our findings extend the list of problems that statistical uncertainty raises
for algorithmic fairness. Previous work observed that fairness metrics are biased: They “fail to
account for statistical uncertainty . . . exaggerating the extent of performance disparities” between
groups where such disparities exist and indicating disparities “in cases where model performance
is . . . identical across groups” [6]. Our present findings add that with increasing statistical uncertainty
fairness metrics risk becoming either nonsensical (if they aggregate point estimates) or morally
inadequate (if they “lower the fairness bar” to enable statistical estimation).

However, we also offer ways of advancing the literature on algorithmic fairness: with desiderata that
clarify the challenges at hand and guide the search for solutions, and with fairness metrics that suggest
novel avenues for defining such metrics based on hypothesis testing and fairness as sufficiency.
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A Discussion: Impact of n and m on Each Model

To give the reader a feel for the mathematical impact of the choice between these two models, we
share some hopefully informative plots in Figure 2.

(a) Values of m− 1.64
√

m(1−m)
n

(b) Values of

min{m+ 1.64
√

m(1−m)
n

, 1}
(c) Values of m+ 1.64

√
m(1−m)

n

Figure 2: Showing the relationship between m (metric), n (number in subgroup), and c (edge of
confidence interval). Hues in 2a shows the values of c in the pessimist’s model. Hues in 2b shows the
values of c in the optimist’s model, but with an upper limit of 1 (since no proportion can be larger
than 1). Hues in 2c shows the values of c in the optimist’s model, without limiting the value at 1 (so
that we can see more easily where it is very difficult to reject the optimist’s hypothesis that the model
is fair).

The horizontal axis of each of these plots is m, the metric value, which is assumed to be a proportion
for which higher values are preferred (such as accuracy). The vertical axis is n, the size of the

subgroup. The hue at (m,n) in Figure 2a is the corresponding value of m− 1.64
√

m(1−m)
n . Here

we can visually see that, for a fixed metric value m, the subgroup size must be reasonably large in
order to reject the hypothesis that the model is “unfair above c” for c near m.

Similarly, the hue at (m,n) in Figure 2b is the corresponding value of m+1.64
√

m(1−m)
n , capped at

a value of 1 (since no proportion can be larger than 1). Here we can visually see that, for a fixed metric
value m, the subgroup size must be reasonably large in order to reject the hypothesis that the model is
“fair up to c” for c near m. To further understand the impact of small groups in this optimist’s model,

we include Figure 2c. In Figure 2c, the hue simply gives the value of m+ 1.64
√

m(1−m)
n , even if it

is larger than 1. This plot further highlights the fact that, in the optimist’s model, it is very difficult to
reject the hypothesis that the model is perfectly fair for very small subgroups.

B Limitations

We note that the issue of multiple hypothesis testing is one which we do not address in depth. If
membership in the different groups in question is independent, one can use the Bonferroni correction
to address the multiple hypothesis tests. Under this strict type of multiple hypothesis testing, the
p-values that are calculated are using significance level α

n , where n is the number of hypotheses
that we are testing. This correction guarantees that the probability that we reject one or more null
hypotheses is no more than α. Considering overlapping subgroups (such as considering fairness both
for Black Women and for Latina Women) requires more care, and we do not delve into the issue of
overlapping subgroups here. We thus, effectively, assume—counterfactually—that each person is a
member of exactly one group. For the purposes of our empirical study (below), we fix the number of
protected attributes to be as large as possible, as described in Section C.1.

C Methods

We here provide further details on our empirical methods.

For starters, we choose the lale library and its accompanying datasets for two reasons:
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1. The number of “fairness datasets” in the lale library is larger than any other conglomeration
of fairness datasets that we are aware of.

2. Because the lale library has built-in models, we can apply a consistent type of model to each
dataset, so that our experiments are not muddied by differing model constructions.

C.1 Subgroup Identification

The models we created use a forest of boosted trees from the XGBoost library; the functions to easily
create these models are also part of the lale library. We created three models using the lale pipeline,
using 3-fold cross-validation. The three models can be accessed to evaluate their accuracy on various
subgroups. However, since lale requires sklearn version 1.2, we do not have access to the train/test
indices of each of the models. Thus, to evaluate the accuracy on group G, we do so on all of the
members of G in the dataset.18

The set of subgroups G on which we calculated the model accuracy come in part from the fairness
data that lale provides, and also from attributes that are well-understood to be sensitive. Specifically,
all of the attributes that the lale library lists as “protected” are included in our master list of protected
attributes. If the rows in the dataset correspond to individuals, and any of {age, sex, race} were not in
lale’s list of protected attributes, we added them to the master list. From this master list, we created
all subgroups using all categories in the master list. For example, if a dataset had race, sex, and age
category, we included in G each triple (r, s, a), where r was a race in that dataset’s race column, s
was a sex in that dataset’s sex column, and a was an age category for that dataset.

C.2 Data Pre-processing

For each of the 20 fairness datasets, we used the built-in lale data pre-processing with small adjust-
ments.

We used the simple methods for imputing missing data which are provided with the sample notebook
at [33].

In order to use XGBoost, we needed to change some of the predicted categories to integer type.

In order to make the results more understandable, we re-named some of the categories (for example,
changing the ‘sex’ categories from 0/1 to male/female).

The “race” categories in the nlsy dataset were atypical, including both categories such as ‘GERMAN’
and ‘BLACK.’ We did not attempt to clean that data but left the categories as given.

We created groupings by age for those datasets that don’t already come with age groupings (see
Appendix C.3).

C.3 Age Grouping

For the age attribute, some of the datasets already come with age groupings. In those cases, we
directly used those groupings as the age categories. For the datasets where age was a strictly numerical
attribute, we used the following heuristic to create categories:

• If age was already listed by lale as a protected attribute, we used the ranges provided by lale
(for priviledged/unpriviledged groups) to create the categories.

• If age was not already listed as a protected attribute:

– We grouped by decade in all datasets where this produced at least 5 people of each
decade.

– The law_school dataset had fewer than 5 members of the [0,9] decade, and fewer
than 5 members of the [10, 19] decade, so those were grouped into a 0-19 group

18Ideally, we would like to evaluate only on the members of G in the test set for that fold. However, our goal
here is to assess our two proposed ideas to address small-sized subgroups, not to assess true model accuracy.
Averaging the subgroup accuracy across the three folds provides appropriate information to do that. Thus, for
this analysis, we set m(G) to be the average accuracy of the three models for subgroup G.
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After this initial analysis, we tossed out two of the datasets: law_school and speeddating. The
standard lale models created by XGBoost were 100% accurate on those models, and thus did not
provide interesting analysis for us.19

C.4 Analysis

For each such subgroup G ∈ G, we calculated m(G): the average accuracy of the three models on
that subgroup. We then calculate the c values associated with each of those subgroups; indexed by c1
for the optimist’s and c2 for the pessimist’s metric. Specifically, for group G we calculate

cG1 = m(G) + 1.64

√
m(G)(1−m(G))

nG

from the optimist’s model and

cG2 = m(G)− 1.64

√
m(G)(1−m(G))

nG

from the pessimist’s model.

Once these are calculated for all subgroups, we calculate

accmin = min{m(G) : G ∈ G}
c1 = min{cG1 : G ∈ G}
c2 = min{cG2 : G ∈ G}

We also find their corresponding subgroups:

Gmin_acc = argmin{m(G) : G ∈ G}
G1 = argmin{cG1 : G ∈ G}
G2 = argmin{cG2 : G ∈ G}

The group Gmin_acc is the group with minimum estimated accuracy, while group G1 (G2) is on the
cusp of rejecting the hypothesis that the model is fair (not being able to reject the hypothesis that
the model is unfair) up to accuracy c1 (c2). Thus, we call groups Gmin_acc, G1, and G2 the critical
subgroups for a dataset. For some datasets, there are three distinct critical subgroups, while for other
datasets, some of the critical subgroups are the same; see Tables 1, 2, 3, and 4 in Appendix D for
details.

Once we had the (up to) three critical subgroups of each dataset, we did two additional analyses.

C.4.1 Subsample Just the Critical Group

Suppose G is a critical subgroup of a dataset. We then created 10 models (each a set of three 3-fold
cross-validated models), where we include 10%, 20%, . . . , 100% of the subgroup in the dataset used
to create the model. We then evaluated that group’s critical value (whether it be m(G), cG1 , or cG2 ) on
each of those 10 models, to see how those values change. The intention here is to mimic increasing
samples from just the critical group, and how that additional data collection impacts the fairness
evaluation of the model. These results of this analysis were in Figure 1.

C.4.2 Subsample the Entire Dataset

Suppose G is a critical subgroup of a dataset. We also created 10 models (each a set of three 3-fold
cross-validated models), where we included 10%, 20%, . . . , 100% of the entire dataset to create the

19We suspect that these datasets might be included in lale’s list because they have low scores on other fairness
metrics, such as the “symmetric class imbalance” metric in the sample notebook at [33], or because the model
must use protected attributes in order to be accurate.
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model. We then evaluated that group’s critical value (whether it be m(G), cG1 , or cG2 ) on each of
those 10 models, to see how those values change. The intention here is to mimic increasing sampling
overall, and how that additional data collection impacts the fairness evaluation of the model. We note
that, for the nursery dataset, one of the predicted categories (recommend) had only two data points
with that category. In order for XGBoost to successfully create a model, we needed to add back both
of those two data points into each subsample (if they had been removed in that random subsample).
The results of this analysis are in Figure 3.

Figure 3: Plots of m(G), cG1 , and cG2 of critical subgroups G for each dataset. Here we subsampled
the entire dataset, and the x-axis corresponds to the percentage of the entire dataset that is kept.
Legend lists the dataset name.
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D Tables

Dataset Min m(G) Subgroup Min c1 Subgroup Min c2 Subgroup
adult (White, Male, 50’s) (White, Male, 50’s) (Other, Male, 60’s)
bank <=24 <=24 <=24
compas (Male, Native Ameri-

can, 25 - 45)
(Male, African-
American, 25 -
45)

(Male, Native Ameri-
can, 25 - 45)

compas_violent (Female, African-
American, <25)

(Male, African-
American, 25-45)

(Male, Other, >45)

creditg (male div/sep, male,
<=25)

(male single, male,
>25)

(male div/sep, male,
<=25)

default_credit (male, 40’s) (male, 40’s) (female, 70’s)
heart_disease (female, >54) (female, >54) (female, >54)
meps19 (White, 80’s, female) (White, 80’s, female) (Non-White, 80’s,

male)
meps20 (Non-White, 80’s, fe-

male)
(Non-White, 80’s, fe-
male)

(Non-White, 80’s, fe-
male)

meps21 (Non-White, 80’s, fe-
male)

(Non-White, 80’s, fe-
male)

(Non-White, 80’s, fe-
male)

nlsy (Female, <18,
GREEK)

(Female, >=18, GER-
MAN)

(Female, <18,
HAWAIIAN)

nursery great_pret great_pret great_pret
ricci W B W
student_math (M, <18) (M, <18) (M, <18)
student_por (M, >=18) (M, <18) (M, >=18)
tae 1.0 2.0 1.0
titanic (female, 60’s) (female, 30’s) (female, 60’s)
us_crime TRUE TRUE TRUE

Table 1: Subgroups with minimum m(G), c1, or c2 for each dataset.
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Dataset Subgroup Subgroup Category n m(G)

adult (White, Male, 50’s) [race, sex, age_cat] 4256 0.8020050125313280
bank <=24 age_cat 809 0.7766790276060980
compas (Male, Native Ameri-

can, 25 - 45)
[sex, race, age_cat] 6 0.9444444444444450

compas_violent (Female, African-
American, <25)

[sex, race, age_cat] 95 0.9929824561403510

creditg (male div/sep, male,
<=25)

[personal_status, sex,
age_cat]

2 0.6666666666666670

default_credit (male, 40’s) [sex, age_cat] 2771 0.8078912546613740
heart_disease (female, >54) [sex, age_cat] 103 0.9158576051779940
meps19 (White, 80’s, female) [RACE, age_cat,

SEX]
184 0.947463768115942

meps20 (Non-White, 80’s, fe-
male)

[RACE, age_cat,
SEX]

146 0.9474885844748860

meps21 (Non-White, 80’s, fe-
male)

[RACE, age_cat,
SEX]

142 0.9577464788732400

nlsy (Female, <18,
GREEK)

[gender, age_cat,
race]

2 0.666666666666667

nursery great_pret parents 4320 0.8922839506172840
ricci W race 68 0.9901960784313730
student_math (M, <18) [sex, age_cat] 134 0.9676616915422890
student_por (M, >=18) [sex, age_cat] 73 0.9406392694063930
tae 1.0 whether_of_not

_the_ta_is_a_native
_english_speaker

29 0.8045977011494250

titanic (female, 60’s) [sex, age_cat] 10 0.9666666666666670
us_crime TRUE blackgt6pct 970 0.9663230240549830

Table 2: Subgroups with minimum accuracy value m(G)
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Dataset Subgroup Subgroup Category n c1
adult (White, Male, 50’s) [race, sex, age_cat] 4256 0.8120224969943970
bank <=24 age_cat 809 0.8006925092362380
compas (Male, African-

American, 25 -
45)

[sex, race, age_cat] 1563 0.994278290695671

compas_violent (Male, African-
American, 25 -
45)

[sex, race, age_cat] 932 0.999219907516058

creditg (male single, male,
>25)

[personal_status, sex,
age_cat]

492 0.94429531762294

default_credit (male, 40’s) (sex, age_cat) 2771 0.820164957561691
heart_disease (female, >54) (sex, age_cat) 103 0.96071630150011
meps19 (White, 80’s, female) [RACE, age_cat,

SEX]
184 0.974437789794083

meps20 (Non-White, 80’s, fe-
male)

[RACE, age_cat,
SEX]

146 0.977763384001414

meps21 (Non-White, 80’s, fe-
male)

[RACE, age_cat,
SEX]

142 0.985432236390149

nlsy (Female, >=18, GER-
MAN)

[gender, age_cat,
race]

179 0.88480628727837

nursery great_pret parents 4320 0.9000195456124770
ricci B race 27 1.0
student_math (M, <18) (sex, age_cat) 134 0.992723469193729
student_por (M, <18) (sex, age_cat) 193 0.978258629541195
tae 2.0 whether_of_not

_the_ta_is_a_native
_english_speaker

122 0.912074688695555

titanic (female, 30’s) (sex, age_cat) 86 0.99964644295967
us_crime TRUE blackgt6pct 970 0.975822194666121

Table 3: Subgroups with minimum c1 value
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Dataset Subgroup Subgroup Category n c2
adult (Other, Male, 60’s) [race, sex, age_cat] 10 0.6903719639038720
bank <=24 age_cat 809 0.7526655459759590
compas (Male, Native Ameri-

can, 25 - 45)
[sex, race, age_cat] 6 0.7910815916767240

compas_violent (Male, Other, Greater
than 45)

[sex, race, age_cat] 49 0.9739395574376140

creditg (male div/sep, <=25) [personal_status,
age_cat]

2 0.12000000000000000

default_credit (female, 70’s) [sex, age_cat] 12 0.6973855176357850
heart_disease (female, >54) [sex, age_cat] 103 0.8709989088558780
meps19 (Non-White, 80’s,

male)
[RACE, age_cat,
SEX]

67 0.9066848240754210

meps20 (Non-White, 80’s, fe-
male)

[RACE, age_cat,
SEX]

146 0.9172137849483570

meps21 (Non-White, 80’s, fe-
male)

[RACE, age_cat,
SEX]

142 0.9300607213563300

nlsy (Female, <18,
HAWAIIAN)

[sex, age_cat, race] 1 -0.10643674743062500

nursery great_pret parents 4320 0.8845483556220900
ricci W race 68 0.9706008691220500
student_math (M, <18) [sex, age_cat] 134 0.9425999138908480
student_por (M, >=18) [sex, age_cat] 73 0.8952823458833590
tae 1.0 whether_of_not

_the_ta_is_a_native
_english_speaker

29 0.6838443819651760

titanic (female, 60’s) [sex, age_cat] 10 0.8735726878662690
us_crime TRUE blackgt6pct 970 0.9568238534438450

Table 4: Subgroups with minimum c2 value
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E Analysis of Metric from Kearns et al.

As noted in Section 4.3, we hypothesize that the fairness metric outlined by Kearns et al. [2] violates
Incentive Compatibility. The fairness metric likely “looks worse” as additional data is gathered about
a small subgroup (i.e., a group whose size in proportion to the entire dataset is small). The fairness
metric includes a factor which is the proportion of the subgroup within the dataset. Thus, as additional
data is collected from that subgroup alone, this proportion increases, making the model more likely
to violate the fairness criteria, hence potentially disincentivizing additional data collection on that
subgroup. Here we empirically examine this hypothesis.

E.1 Study Description

Using the same datasets, subgroups, pre-processing, cleaning, and models outlined in Appendix C,
we calculate the value of the following expression from Equation (2):

α(G)|m(G)−m(·)| (6)

Recall that α(G) is the proportion of group G within the total population, and that m is some model
performance metric (as in Appendix C, we use accuracy as our sample metric m for this study). The
value m(G) is the model performance metric evaluated only on subgroup G, while m(·) is the value
of the model performance metric on the entire dataset.

Kearns et al. [2] use an auditing process wherein the value calculated from expression (6) must be
below some threshold ϵ in order for a model to be considered fair. Thus, we can think of expression
(6) as describing unfairness for group G.20

E.2 Methods

We calculate the value in expression (6) on increasing subsamples of each dataset. We concentrate on
small sugbroups G that comprise no more than 10% of the total population. Just as in the experiments
described in Appendix C, we examine two subsampling scenarios: We subsample the subgroup in
question only (to simulate gathering more subgroup data), and we subsample the entire dataset (to
simulate gathering more population data). Note that, of course, the values of m depend on the model
created, which depends on the subsample of the data used to create the model.

Many of the datasets (heart_disease, nursery, ricci, student_math, student_por,
tae and us_crime) don’t have any subgroups comprising less than 10% of the total population, and
thus we exclude those datasets from this analysis. From the other datasets, we concentrate on four:
the adult, bank, meps20, and titanic datasets. The results for all other datasets are similar.

In Section 4.3, we hypothesize that the protocol of Kearns et al. violates Incentive Compatibility.
Specifically, we hypothesize that when subsampling only small groups, the unfairness value of
expression (6) would increase. Since the value α(G) does not change significantly when subsampling
the entire population, we do not expect expression (6) to change much when subsampling the entire
dataset, aside from the fact that potentially a better model might make expression (6) decrease.

E.3 Results and Discussion

The results of subsampling just the small subgroup can be found in Figure 4, and the results of
subsampling the entire dataset can be found in Figure 5.

When only the small subgroup is subsampled (as in Figure 4), we see the value of (6) increasing for
all subgroups in the adult and bank datasets. The picture is slightly more muddled in the meps20
and titanic datasets, but these still show either a consistent increase or an initial increase for nearly
all of the small subgroups. In other words, the value (6) of unfairness increases, indicating that the
Kearns et al. auditing process discourages additional data collection of small subgroups, and thus
violates Incentive Compatibility.

When the entire dataset is subsampled (as in Figure 5), values of (6) remain remarkably consistent in
the adult dataset, and tend to decrease in the bank, meps20, and titanic datasets. We can thus

20All typical ways of defining “fairness” can be interpreted this way. A higher ϵ in (1) is interpreted as a
decrease in fairness and thus an increase in unfairness.
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Figure 4: Values of expression (6) on the adult, meps20, titanic, and bank datasets. Horizontal
axis is the percent of the subgroup, vertical axis is unfairness (i.e., the value of expression (6)).

conclude that the Kearns et al. approach, while it discourages collecting additional data from only the
smallest subgroups in a dataset (thereby not satisfying Incentive Compatibility), does not appear to
discourage additional data collection when each subgroup’s proportion within the population stays
consistent.
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Figure 5: Values of expression (6) on the adult, meps20, titanic, and bank datasets. Horizontal
axis is the percent of the entire dataset kept, vertical axis is unfairness (i.e., the value of expression
(6)).
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