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Problem: Statistical Uncertainty

Intersectionality makes typical fairness definitionsmeaningless
because of statistical uncertainty due to increasingly small subgroups

Intersectionality: Fairness for subgroups
e.g., for Maghrebi older women in France simultaneously
instead of each ethnic origin, age, gender, location separately

But: Number of intersectional subgroups grows exponentially:∏
kn (for n k‑valued attributes)

Thus: High statistical uncertainty in fairness “metrics”
Problem: Widely‑used definitions of fairness becomemeaningless

|m(G) − m(·)| < ϵ ∀ G

where m(·) m(G)model performance (however understood) for group G

Solutions: Desiderata

Based on consensus in literature, uncontroversial assumptions

1. Minimal Justice: Don’t lower fairness standard for certain groups;
i.e., “don’t disadvantage the disadvantaged”

2. Incentive Compatibility: Don’t discourage further data collection,
and don’t encourage deliberate mistakes

Existing Solutions Violate Desiderata

Example: Kearns et al. (2018)
α(G) |m(G) − m(·)| < ϵ ∀ G

where α(G) = Pr(G), proportion of group G in population

Violates Minimal Justice: fairness proportional to group size
small groups are often disadvantaged, i.e., less fairness for them

Violates Incentive Compatibility
discourages minority group data collection
(since model subgroup performance is typically lower than current estimate)
generally, one can improve fairness by making deliberately inaccurate predictions
(on group with high model performance)

Alternative: Metrics Based on Hypothesis Testing

Optimist's Metric Pessimist's Metric

Null hypothesis: Model is fair
H0 : m(G) > c ∀ G
H1 : m(G) ≤ c ∃ G

Null hypothesis: Model is unfair
H0 : m(G) < c ∃ G
H1 : m(G) ≥ c ∀ G

Maximal c such that ∀ G:

c ≤ m(G) + 1.64

√
m(G)(1 − m(G))

nG

Interpretation: Model is ‘fair up to
c’—likely performs up to c‑well for
all groups. dirty hack to make
columns here line up vertically

Maximal c such that ∀ G:

c ≤ m(G) − 1.64

√
m(G)(1 − m(G))

nG

Interpretation: Model is ‘unfair
above c’—model likely does not
perform at least c′‑well for some
group at any c′ > c.

Theoretical Analysis: Meets Desiderata?

Minimal Justice
Same fairness standard c for all groups
Fairness as sufficiency instead of equality

Incentive Compatibility
Not susceptible to gaming (no “levelling down”)
because fairness defined in terms of absolutemodel performance
Pessimistic metric incentivizes data collection (to reject hypothesis)
But optimistic metric may discourage data collection on small groups

Empirical Analysis

Test whether proposedmetrics meet Incentive Compatibility
Method

18 fairness datasets from IBM’s lale library
XGBoost models with 3‑fold cross‑validation using lale
Identify critical subgroups: Minimum accuracy, minimum c1, minimum c2

Subsampling experiments on critical subgroups and full datasets

Result: Both metrics satisfy Incentive Compatibility
Both the Optimist’s Metric and Pessimist’s Metric increase as data in‑
crease, indicating they satisfy Incentive Compatibility.

m(G) = accuracy, group G cG
1 = Optimist’s cG

2 = Pessimist’s metric

Summary

Describe intersectionality problem for fairness estimation
Develop desiderata to guide search for fairness metrics
Illustrate desiderata with metrics based on hypothesis testing
Explore fundamentally different approach: fairness as sufficiency
(not equality), accounting for uncertainty (not point estimates)
Does existing literature sufficiently consider statistical uncertainty in
estimating fairness?


